Appendix K3

TCEQ Edwards Aquifer Regulatory Evaluation

1.1 BACKGROUND

1.1.1 Introduction

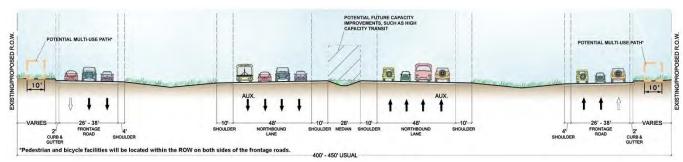
The US 281 Environmental Impact Statement (EIS) is being prepared for the Alamo Regional Mobility Authority (Alamo RMA) to evaluate improvements to the US 281 roadway from Loop 1604 to Borgfeld Drive. The project limits fall completely within Bexar County and include the floodplains of Mud Creek, two unnamed tributaries to Mud Creek, West Elm Creek, Elm Waterhole Creek, and unnamed tributaries Cibolo Creek.

1.1.2 Purpose

This report outlines the procedure used to evaluate the compliance of all proposed build alternatives to meet the current regulatory requirements mandated by the Texas Commission on Environmental Quality (TCEQ), as well as the City of San Antonio requirement that proposed storm water runoff not increase from original conditions. One no-build alternative and two build alternatives were evaluated via the methodology detailed herein and the resulting conclusions are included in this report.

1.1.3 Alternatives

All build alternatives being evaluated will increase the quantity of impervious cover as they propose the construction of frontage roads, elevated roadways, and connector ramps. The proposed alternatives are summarized below; reference Section 3.9 of the US 281 Draft EIS for additional information.


Expressway Alternative

This alternative consists of three, full access-controlled through travel lanes in each direction (**Figure K3-1**). The express lanes would be situated between partial access-controlled outer lanes, also known as frontage roads. The frontage road lanes, which would cross local streets at grade via signalized intersections, would be continuous for the length of the proposed project and serve local traffic by providing direct access to businesses, neighborhoods and connecting streets. Under this alternative neither the existing US 281 travel lanes nor the existing US 281 Super Street would remain in place. Four direct connector ramps would be provided at Loop 1604 to provide mainlane to mainlane connections for US 281 motorists travelling westbound Loop 1604 to northbound US 281, southbound US 281 to eastbound Loop 1604, eastbound Loop 1604 to northbound US 281, and southbound US 281 to westbound Loop 1604. The proposed ROW would typically be 400 to 450 feet wide (wider at the interchanges). North of Sonterra Boulevard, the main lanes would be separated by a 28-foot median capable of supporting potential future capacity improvements, such as high capacity transit. The Expressway Alternative requires approximately 128 acres of additional ROW.

Figure K3-1: Expressway Alterntive typical section

Source: US 281 EIS Team, 2012.

Elevated Expressway Alternative

This alternative consists of two-to-three, full access-controlled through travel lanes in each direction. No streets or driveways would access the through lanes directly. The express lanes would be elevated for the length of the project corridor. At Loop 1604, the northbound and southbound elevated express lanes will connect directly to eastbound and westbound Loop 1604. From Loop 1604 north to Stone Oak Parkway, the elevated express lanes would be built on the outside of the existing US 281 roadway (Figure K3-2a) and would transition to the west side of the existing US 281 roadway north of Stone Oak Parkway to Borgfeld Drive (Figure K3-2b). The existing US 281 travel lanes, including a portion of the US 281 Super Street, would remain in place as partial access-controlled lanes, crossing local streets at grade via signalized intersections for the length of the proposed project, serving local traffic by providing direct access to businesses, neighborhoods and connecting streets. The proposed ROW would typically be 384 to 400 feet wide. A median of 37 feet (average width) would provide for potential future capacity improvements, such as high capacity transit, south of Stone Oak Parkway. After the northbound elevated section shifts to the west side of existing US 281, the area for potential future capacity improvements shifts to between the elevated structures and continues north to Borgfeld Drive. The Elevated Expressway Alternative requires approximately 99 acres of additional ROW.

Figure K3-2a: Elevated Expressway Alternative typical section(south of Stone Oak Parkway)

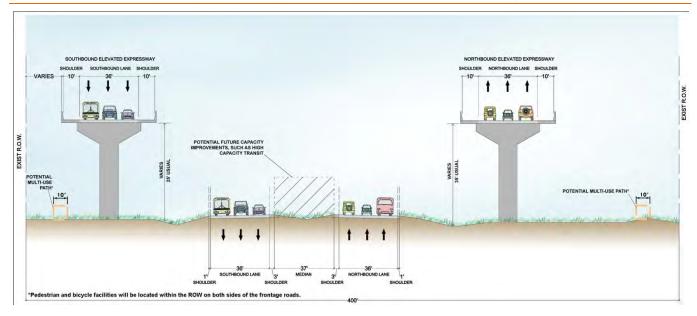
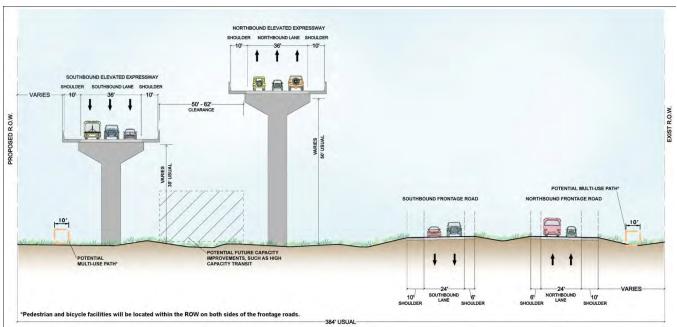



Figure K3-2b: Elevated Expressway Alternative typical section (north of Stone Oak Parkway)

Source: US 281 EIS Team, 2011.

No-Build Alternative

The No-Build Alternative is considered the baseline alternative for comparison to the two Proposed Build Alternatives. Under the No-Build Alternative, the existing transportation infrastructure in the project corridor would remain unchanged for the foreseeable future. This report does not include a drainage evaluation for the No-Build Alternative as it is assumed any existing impervious cover is

compliant with the TCEQ requirements in place at the time of construction; all future impervious cover additions would be subject to regulations in place at the time.

1.1.4 Regulatory Requirements

All build alternatives are located on the recharge zone of the Edwards Aquifer and are thus subject to Title 30 Chapter 213 of the Texas Administrative Code which regulates any activity having the potential for polluting the Edwards Aquifer and hydrologically connected surface streams.

As previously noted, all build alternatives propose the addition of impermeable surfaces, primarily in the form of expanded roadways, which prevent the natural infiltration of water into the soil and are therefore defined by TCEQ as impervious cover areas. Impervious cover increases the potential for surface water contamination with suspended solids, thus introducing an increased risk of groundwater degradation as a result. To prevent contaminated storm water from reaching downstream receiving waters and groundwater, TCEQ regulates the total suspended solids (TSS) load permitted to leave the site by requiring an Edwards Aquifer protection plan that must reduce the increase in TSS load associated with development by at least 80%.

Prior to commencement of construction, an Edwards Aquifer protection plan must be filed and approved in compliance with TCEQ regulations. The rules and regulations for any regulated activity within the Edwards Aquifer recharge zone are available for reference in Texas Administrative Code Title 30 Chapter 213 Subchapter A.

Acceptable methods of solids removal are listed in the TCEQ Technical Guidance Manual (Complying with the Edwards Aquifer Rules – Technical Guidance on Best Management Practices, TCEQ, July 2005) which includes design criteria. Sand filter ponds are a common Best Management Practice (BMP) used that allows for settling and filtration of solids.

The objective of sand filters is to remove sediment and pollutants from the first flush of pavement and impervious area runoff. The filtration of nutrients, organics, and coliform bacteria is enhanced by a mat of bacterial slime that develops during normal operations. One of the main advantages of sand filters is their adaptability; they can be used on areas with thin soils, high evaporation rates, low-soil infiltration rates, in limited spaces areas, and where groundwater is to be protected.

1.2 METHODOLOGY

The purpose of this study is to evaluate the compliance of the three alternatives with the TCEQ Edwards Aquifer Protection Program rules. Each alternative will be evaluated to determine whether it can meet the required TSS removal as required by TCEQ. TSS removal is achieved by directing the first flush of runoff to a pond having the volume required as specified by TCEQ calculations.

1.2.1 Treatment Method

For this analysis, sand filter ponds, also referred to as water quality ponds are assumed to be the primary treatment best management practice (BMP). Calculations are provided for all watersheds using the same treatment. By using the same treatment on all watersheds, the ability to obtain treatment

within a watershed can be more easily judged. Sand Filters are a commonly used BMP for projects with a large increase in pavement areas with right-of-way constraints. Other BMPs may be incorporated into the final design; however it is a conservative approach to evaluate each alternative using the sand filter pond design.

1.2.2 Watersheds

The proposed project area has been divided into watersheds in order to estimate the required and obtainable TSS removal. Each watershed has been evaluated for the amount of TSS increase, the removal required and the amount of removal obtained from the proposed BMP.

1.2.3 Calculations

Calculations have been performed utilizing TCEQ's equations/spreadsheet for TSS generation and removal. Summary sheets from those calculations are included as **Appendix A and B**. Basin sizes required for appropriate TSS removal have also been calculated and are presented in the summary.

Inputs required for the TSS calculations included the total project area, the County in which the project resides (for rainfall determination), the amount of existing and proposed impervious areas. As mandated by TCEQ, 80% removal of the increase in TSS is calculated as a required removal. All existing impervious cover is assumed to have been installed per regulatory rules (if any) at the time of their installation. Therefore, the No Build Alternative will not require calculations for TSS removal. There are no requirements for the treatment of the existing impervious cover therefore the two alternatives which include options for proposed pavement will only treat the additional TSS created from the increase in impervious cover.

1.2.4 Procedure

Electronic files of the proposed alternatives were used to obtain all proposed impervious cover calculations. The procedure below has been used to evaluate each alternative:

- 1. Generate impervious areas using CAD within the right-of-way for each alternative.
- 2. Combine existing and proposed areas in order to obtain the total post construction impervious cover
- 3. Identify potential locations for water quality ponds.
- 4. Calculate existing and proposed impervious cover within each watershed defined by locations of water quality ponds.
- 5. Use spreadsheet to determine the TSS removal goals for each watershed and estimate basin volumes to achieve the required removal.
- 6. Examine the footprint of the basins required and develop proposed right-of-way needs.

1.2.5 Assumptions and Clarifications

The following assumptions have been made in the development of this analysis:

• There are several approaches to location/design of water quality basins. Once a reasonable approach to meeting the treatment goal was identified, no other consideration for size, location

- and treatment was made. Further design of all water quality features will be required during final design.
- All existing impervious cover is assumed to have been installed per regulatory rules (if any) at
 the time of their installation and no treatment will be included in calculations for existing
 impervious cover. There are no requirements for treating existing impervious cover, only that
 increased impervious cover from the proposed project.
- All pond locations are approximate and exact locations will be identified during final design.
- A detailed drainage design will be required during the final design for all of the alternatives other than the No Build alternative.
- This report has been provided to determine whether treatment goals can be met. Development
 of the water quality basins during the final design will require the evaluation of best location
 and design configuration for the basins.

1.3 EVALUATION

1.3.1 Evaluation Criteria

Each alternative was evaluated utilizing the following questions:

- Are the TSS removal requirements set by TCEQ provided?
- Is the required TSS removal provided within the specified right-of-way limits or will additional right-of-way be required?

1.3.2 Evaluations Results

The following table presents a summary of the results.

Table 1: Summary of Results

Alternative	Total Number of Major Watersheds	Total Number of BMP Watersheds/ Basins	Total TSS Removal Required (lbs)	TCEQ Requirements Met (Y/N)	Number of Basins Requiring Additional Right-of- Way	
No Build	N/A	N/A	N/A	N/A	N/A	
Expressway	23	30	80,481	Y	16	
Elevated Expressway	23	23	93,236	Y	0	

Source: US 281 EIS Team, 2012

1.3.3 Ability to Provide Required Treatment

The Proposed Build Alternatives evaluated are capable of meeting the TCEQ requirements for TSS removal.

1.3.4 Additional Right-of-Way Requirements

The Elevated Expressway Alternative would not require any additional right-of-way outside of what is already planned for roadway expansion. The Expressway Alternative would require purchase of additional right-of-way for the water quality basins.

1.3.5 No Build

The existing impervious cover is assumed to be in compliance with all TCEQ regulations and the No Build option would not require any TCEQ coordination and all goals are considered met.

1.4 CONCLUSIONS

Both Proposed Build Alternatives are able to meet the current regulatory requirements set forth by TCEQ for the entire project area. Therefore, a WPAP in accordance with current regulations could be prepared for either alternative selected for construction.

- The Expressway Alternative adds the lesser amount of impervious cover and therefore would require less treatment; however it would require additional right-of-way areas to obtain the required amount of TSS removal required.
- The Elevated Expressway Alternative requires more additional impervious cover yet would require no additional right-of-way for water quality purposes to obtain the required amount of TSS removal.

As mentioned early, the evaluation was performed using only sand filter basins as a BMP to be able to directly compare the build options. Sand filter basins are one option of several permanent controls approved by TCEQ. Others include

- Retention/Irrigation
- Extended Detention Basins
- Grassy Swales
- Vegetative Filter Strips
- Bioretention
- Wet Basins
- Constructed Wetlands
- Permeable Concrete

Various innovative technologies have also been approved by TCEQ for use within the recharge zones of the Edwards Aquifer. These methods include

- Contech StormFilter
- Stormceptor
- Vortechs

This list is subject to change by TCEQ and all methods should be verified with TCEQ's current approved list at the time of final design.

Impervious Cover Summary – Expressway Alternative

EXPRESSWAY ALTERNATIVE

LAFILLOOVA	ALIERNATIVE	E.	1	I			
Name	Total On-Site Area (acres)	Existing On-Site Impervious Area (acres)	Proposed On-Site Impervious Area (acres)	Proposed Increase in Impervious Area (acres)	Existing On-Site % Impervious	Proposed On-Site % Impervious	
AA	18.68	12.32	12.78	0.46	65.95	68.41	
Α	12.06	4.78	8.61	3.83	39.66	71.41	
В	18.74	3.30	8.78	5.48	17.60	46.83	
C,D	13.03	3.18	7.58	4.40	24.41	58.19	
E,F	16.29	3.97	9.84	5.87	24.34	60.39	
G	17.60	4.79	12.05	7.26	27.23	68.47	
Н	10.50	2.66	6.97	4.31	25.32	66.34	
l1	14.89	4.01	9.32	5.31	26.91	62.58	
12	13.93	2.72	6.84	4.13	19.49	49.12	
J,K	18.82	4.52	9.73	5.21	24.00	51.69	
L	13.00	1.60	5.62	4.01	12.34	43.21	
М	27.02	4.20	10.88	6.68	15.56	40.28	
N	12.44	3.03	6.85	3.81	24.36 35.46 23.50	55.01 43.60	
0	13.97	4.95	6.09	1.14			
00	50.40	11.85	21.39	9.55		42.45	
Р	13.41	3.19	4.80	1.62	23.75	35.80	
Q	27.22	6.32	13.84	7.51	23.23	50.83	
R	22.59	7.93	10.78	2.85	35.09	47.72	
S	19.42	10.87	10.91	0.04	55.96	56.16	
Т	13.81	4.40	7.01	2.61	31.87	50.76	
U	26.20	5.98	12.68	6.70	22.82	48.38	
V	24.03	4.83	7.71	2.88	20.10	32.10	
W	28.74	5.82	8.79	2.97	20.24	30.58	
TOTAL	446.79	121.20	219.83	98.63			

Impervious Cover Summary – Elevated Expressway Alternative

Name	Total On-Site Area (acres)	Existing On-Site Impervious Area (acres)	Proposed On-Site Impervious Area (acres)	Proposed Increase in Impervious Area (acres)	Existing On-Site % Impervious	Proposed On-Site % Impervious
AA	16.30	10.61	12.81	2.20	65.09	78.56
Α	10.95	5.77	7.44	1.68	52.65	67.95
В	10.66	2.32	4.10	1.78	21.77	38.43
С	12.18	3.12	4.18	1.05	25.64	34.30
D	12.49	3.25	6.86	3.62	25.98	54.94
E	5.40	1.19	2.69	1.50	22.08	49.90
F	12.29	2.89	5.95	3.06	23.50	48.36
G	20.83	5.89	12.13	6.23	28.29	58.21
Н	14.54	4.76	8.04	3.28	32.76	55.32
I	27.49	6.75	17.55	10.80	24.56	63.84
J	10.03	2.36	5.05	2.69	23.55	50.40
K	9.40	3.21	4.11	0.90	34.18	43.77
L	8.45	1.93	3.38	1.45	22.83	39.95
М	31.73	4.97	11.42	6.45	15.65	35.99
N	14.28	3.23	7.08	3.84	22.66	49.59
0	15.07	5.65	8.37	2.72	37.46	55.53
00	48.26	12.00	28.00	16.00	24.87	58.02
Р	12.39	3.71	6.80	3.09	29.97	54.88
Q	22.14	5.70	12.35	6.64	25.77	55.77
R	15.22	6.58	9.06	2.48	43.23	59.54
S	24.65	11.83	12.93	1.09	48.00	52.44
T	11.50	6.18	7.10	0.92	53.73	61.76
U	23.19	4.76	9.83	5.07	20.50	
V	16.49	5.40	6.86	1.46	32.75	41.58
W	28.69	5.86	7.76	1.90	20.41	27.03
TOTAL	434.65	129.94	221.84	91.91		

Detention Summary – Expressway Alternative

Basin	EXIS'	WAY	EXPRE:			
Name	DA (ac)	% IC	DA (ac)	% IC		
AA	18.68	65.95	18.68	68.41		
Α	12.1	39.66	12.06	71.41		
В	18.7	17.60	18.74	46.83		
C,D	13.0	3.18	13.03	7.58		
E,F	16.3	3.97	16.29	9.84		
G	17.6	4.79	17.60	12.05		
Н	10.5	2.66	10.50	6.97		
I1	14.9	4.01	14.89	9.32		
12	13.9	2.72	13.93	6.84		
J,K	18.8	4.52	18.82	9.73		
J	9.4	2.3	9.4	4.9		
K	9.4	2.3	9.4	4.9		
L	13.0	1.60	13.00	5.62		
М	27.0	4.20	27.02	10.88		
N	12.4	3.03	12.44	6.85		
0	14.0	4.95	13.97	6.09		
001*	17.6	4.15	17.64	7.49		
002*	35.3	8.3	35.3	15.0		
OO3*	7.6	1.8	7.6	3.2		
Р	13.4	3.19	13.41	4.80		
Q	27.2	6.32	27.22	13.84		
R	22.6	7.93	22.59	10.78		
S	19.4	10.87	19.42	10.91		
Т	13.8	4.40	13.81	7.01		
U1	18.3	4.19	18.34	8.87		
U2	7.9	1.79	7.86	2.31		
V1	12.0	2.41	12.01	3.86		
V2	12.0	2.41	12.01	3.86		
W	28.7	5.82	28.74	8.79		

Estimated	Depth	Detention	Detention	Width	Required
Detention	•	Area	10% increase		Length
(CF)	ft.	SF	SF	ft.	_
15,104	4	3,776	4,154	60	69
38701	4	9,675	10,643	60	177
55436	4	13,859	15,245	75	203
44,606	4	11,152	12,267	55	223
59,672	4	14,918	16,410	100	164
74,261	4	18,565	20,422	100	204
44,112	4	11,028	12,131	40	303
53,859	4	13,465	14,811	80	185
41,682	4	10,421	11,463	45	255
52,667	4	13,167	14,483	55	263
26333.3	4	6,583	7,242	55	132
26333.3	4	6,583	7,242	55	132
40,701	5	8,140	8,954	50	179
67,534	5	13,507	14,857	55	270
38,523	4	9,631	10,594	50	212
15,455	4	3,864	4,250	50	85
22,313	4	5,578	6,136	50	123
44626	5	8,925	9,818	75	131
9563	3	3,188	3,506	40	88
18,472	3	6,157	6,773	50	135
75,918	5	15,184	16,702	70	239
33,113	5	6,623	7,285	60	121
11,718	5	2,344	2,578	50	52
27,487	5	5,497	6,047	50	121
47,481	5	9,496	10,446	75	139
20,349	5	4,070	4,477	50	90
16,339	4	4,085	4,493	50	90
16,339	4	4,085	4,493	50	90
35,092	5	7,018	7,720	50	154

^{*} Area for OO was divided into 3 sets of ponds.

Water Quality Summary – Expressway Alternative

			Sediment	ation				l	Filtration			Required				Actual
	Required WQ		Sedimentation	Sedimentation		Required	Required WQ		Required	Length	Actual	Total WQ	Width	Required	Length	Total WQ
Basin	Sed Volume	Depth	Area	40% increase	Width	Length	Filtration Area	Width	Length	Used	Filtration	Area		Length	Used	Area
Name	CF	ft.	SF	SF	ft.	ft.	SF	ft.	ft.	ft.	SF	SF	ft.	ft.	ft.	SF
AA	1595	4	399	574	30	19	0	30	0	30	900	574	30	19	49	1474
Α	7623	4	1906	2744	30	91	353	30	12	30	900	3097	30	103	121	3644
В	13179	4	3295	4745	30	158	610	30	20	30	900	5355	30	178	188	5645
C,D	10066	4	2516	3624	30	121	466	30	16	30	900	4090	30	136	151	4524
E,F	13455	4	3364	4844	50	97	623	50	12	50	2500	5467	50	109	147	7344
G	17343	4	4336	6244	50	125	803	50	16	50	2500	7046	50	141	175	8744
Н	10214	4	2554	3677	40	92	473	40	12	40	1600	4150	40	104	132	5277
l1	12036	4	3009	4333	50	87	557	50	11	50	2500	4890	50	98	137	6833
12	9588	4	2397	3452	40	86	444	40	11	40	1600	3896	40	97	126	5052
J,K	11521	4	2880	4148	40	104	533	40	13	40	1600	4681	40	117	144	5748
J	5761	4	1440	2074	30	69	267	30	9	30	900	2341	30	78	99	2974
K	5761	4	1440	2074	30	69	267	30	9	30	900	2341	30	78	99	2974
L	11267	4	2817	4056	40	101	522	40	13	40	1600	4578	40	114	141	5656
М	16721	4	4180	6020	40	150	774	40	19	40	1600	6794	40	170	190	7620
N	8576	4	2144	3087	30	103	397	30	13	30	900	3484	30	116	133	3987
0	1737	4	434	625	30	21	80	30	3	30	900	706	30	24	51	1525
O&P1	6832	3	2277	3279	40	82	316	40	8	40	1600	3596	40	90	122	4879
O&P2	13664	4	3416	4919	50	98	633	50	13	50	2500	5552	50	111	148	7419
O&P3	2928	3	976	1405	30	47	136	30	5	30	900	1541	30	51	77	2305
Р	3072	3	1024	1475	25	59	142	25	6	30	750	1617	25	65	89	2225
Q	16444	4	4111	5920	40	148	761	40	19	30	1200	6681	40	167	178	7120
R	4611	4	1153	1660	40	41	213	40	5	40	1600	1873	40	47	81	3260
S	1334	5	267	384	30	13	62	30	2	30	900	446	30	15	43	1284
Т	4535	5	907	1306	30	44	210	30	7	30	900	1516	30	51	74	2206
U1	10308	5	2062	2969	40	74	477	40	12	40	1600	3446	40	86	114	4569
U2	4418	4	1104	1590	30	53	205	30	7	30	900	1795	30	60	90	2700
V1	2930	4	732	1055	25	42	341	30	11	30	900	1396	25	56	90	2250
V2	2930	4	732	1055	30	35	341	30	11	30	900	1396	30	47	90	2700
W	5992	4	1498	2157	30	72	277	30	9	30	900	2435	30	81	102	3057

Detention Summary – Elevated Expressway Alternative

Basin	EXIS ROAL	_	ELEVATED EXPRESSWAY ALTERNATIVE				
Name	DA (ac)	% IC	DA (ac)	% IC			
AA	10.95	65.09	16.30	78.56			
Α	10.7	52.65	10.95	67.95			
В	12.2	21.77	10.66	38.43			
С	12.5	25.64	12.18	34.30			
D	5.4	25.98	12.49	54.94			
Е	12.3	22.08	5.40	49.90			
F	20.8	23.50	12.29	48.36			
G	14.5	28.29	20.83	58.21			
Н	27.5	32.76	14.54	55.32			
I	10.0	24.56	27.49	63.84			
J	9.4	23.6	10.0	50.4			
K	8.5	34.2	9.4	43.8			
L	31.7	22.83	8.45	39.95			
M	14.3	15.65	31.73	35.99			
N	15.1	22.66	14.28	49.59			
0	48.3	37.46	15.07	55.53			
00	12.4	24.87	48.26	58.02			
Р	12.4	29.97	12.39	54.88			
Q	22.1	25.8	22.1	55.8			
R	15.2	43.2	15.2	59.5			
S	24.6	48.00	24.65	52.44			
Т	11.5	53.73	11.50	61.76			
U	23.2	20.50	23.19	42.38			
V	16.5	32.75	16.49	41.58			
W	28.7	20.41	28.69	27.03			

Estimated Detention (CF)	Depth ft.	Detention Area SF	Detention 10% increase SF	Width ft.	Required Length
11,212	4	2,803	3,083	50	62
19165	4	4,791	5,270	50	106
18817	6	3,136	3,450	200	17
13,531	4	3,383	3,721	94	40
36,540	4	9,135	10,049	48	209
15,164	3	5,055	5,560	40	139
30,999	4	7,750	8,525	46	185
62,932	4	15,733	17,306	62	277
33,765	4	8,441	9,285	58	160
110,214	4	27,554	30,309	80	379
27224.0	4	6,806	7,487	50	150
11408.7	4	2,852	3,137	47	67
15,269	4	3,817	4,199	41	102
66,109	4	16,527	18,180	105	173
38,932	4	9,733	10,706	106	101
29,071	4	7,268	7,995	25	320
161,954	6	26,992	29,692	50	600
31,442	4	7,861	8,647	99	87
67145	4	16,786	18,465	102	180
27432	4	6,858	7,544	129	58
21,615	4	5,404	5,944	100	59
13,495	4	3,374	3,711	122	30
51,805	5	10,361	11,397	120	95
18,992	4	4,748	5,223	68	77
26,597	4	6,649	7,314	48	152

Water Quality Summary – Elevated Expressway Alternative

	Sedimentation						Filtration				Required				Actual	
	Required WQ		Sedimentation	Sedimentation		Required	Required WQ		Required	Length	Actual	Total WQ	Width	Required	Length	Total WQ
Basin	Sed Volume	Depth	Area	40% increase	Width	Length	Filtration Area	Width	Length	Used	Filtration	Area		Length	Used	Area
Name	CF	ft.	SF	SF	ft.	ft.	SF	ft.	ft.	ft.	SF	SF	ft.	ft.	ft.	SF
AA	2747	4	687	989	20	49	127	20	6	20	400	1116	20	56	69	1389
Α	2649	4	662	954	20	48	137	20	7	20	400	1091	20	55	68	1354
В	55628	6	9271	13351	80	167	8961	80	112	112	8961	22312	80	279	279	22312
С	1907	4	477	687	15	46	88	15	6	15	225	775	15	52	61	912
D	7780	4	1945	2801	40	70	360	40	9	40	1600	3161	40	79	110	4401
Е	3322	2	1661	2392	40	60	154	40	4	40	1600	2546	40	64	100	3992
F	6665	2	3332	4799	40	120	309	40	8	40	1600	5107	40	128	160	6399
G	13208	2	6604	9510	50	190	611	50	12	50	2500	10121	50	202	240	12010
Н	5949	2	2975	4283	40	107	275	40	7	40	1600	4559	40	114	147	5883
I	25531	2	12766	18383	90	204	1182	90	13	90	8100	19565	90	217	294	26483
J	5814	4	1454	2093	40	52	269	40	7	40	1600	2362	40	59	92	3693
K	1427	4	357	514	15	34	66	15	4	15	225	580	15	39	49	739
L	2823	4	706	1016	20	51	131	20	7	20	400	1147	20	57	71	1416
M	16265	2	8133	11711	60	195	753	60	13	60	3600	12464	60	208	255	15311
N	8461	4	2115	3046	35	87	392	35	11	35	1225	3438	35	98	122	4271
0	4482	4	1120	1613	25	65	207	25	8	25	625	1821	25	73	90	2238
00	36051	4	9013	12978	70	185	1669	70	24	70	4900	14648	70	209	255	17878
Р	6081	4	1520	2189	30	73	282	30	9	30	900	2471	30	82	103	3089
Q	14465	4	3616	5207	50	104	670	50	13	50	2500	5877	50	118	154	7707
R	3951	3	1317	1896	30	63	183	30	6	30	900	2079	30	69	93	2796
S	1595	4	399	574	15	38	74	15	5	15	225	648	15	43	53	799
Т	1260	4	315	453	15	30	58	15	4	15	225	512	15	34	45	678
U	11482	5	2296	3307	40	83	532	40	13	40	1600	3838	40	96	123	4907
V	2259	4	565	813	20	41	105	20	5	20	400	918	20	46	61	1213
W	3681	4	920	1325	20	66	170	20	9	20	400	1495	20	75	86	1725